Characterisation of global flow and local fluctuations in 3D SPH simulations of protoplanetary discs
نویسندگان
چکیده
A complete and detailed knowledge of the structure of the gaseous component in protoplanetary discs is essential to the study of dust evolution during the early phases of pre-planetesimal formation. The aim of this paper is to determine if three-dimensional accretion discs simulated by the Smoothed Particle Hydrodynamics (SPH) method can reproduce the observational data now available and the expected turbulent nature of protoplanetary discs. The investigation is carried out by setting up a suite of diagnostic tools specifically designed to characterise both the global flow and the fluctuations of the gaseous disc. The main result concerns the role of the artificial viscosity implementation in the SPH method: in addition to the already known ability of SPH artificial viscosity to mimic a physical-like viscosity under specific conditions, we show how the same artificial viscosity prescription behaves like an implicit turbulence model. In fact, we identify a threshold for the parameters in the standard artificial viscosity above which SPH disc models present a cascade in the power spectrum of velocity fluctuations, turbulent diffusion and a mass accretion rate of the same order of magnitude as measured in observations. Furthermore, the turbulence properties observed locally in SPH disc models are accompanied by meridional circulation in the global flow of the gas, proving that the two mechanisms can coexist.
منابع مشابه
Global MHD simulations of stratified and turbulent protoplanetary discs. II. Dust settling
Aims. The aim of this paper is to study the vertical profile of small dust particles in protoplanetary discs in which angular momentum transport is due to MHD turbulence driven by the magnetorotational instability. We consider particle sizes that range from approximately 1 micron up to a few millimeters. Methods. We use a grid–based MHD code to perform global two-fluid simulations of turbulent ...
متن کامل3D SPH simulations of grain growth in protoplanetary disks
We present the first results of the treatment of grain growth in our 3D, two-fluid (gas+dust) SPH code describing protoplanetary disks. We implement a scheme able to reproduce the variation of grain sizes caused by a variety of physical processes and test it with the analytical expression of grain growth given by Stepinski & Valageas (1997) in simulations of a typical T Tauri disk around a one ...
متن کاملThree-dimensional Sph Simulations of Accretion Discs *
We discuss some 3D numerical simulations of accretion discs using the SPH method and a polytropic equation of state. We show that discs exist even for as large value of the polytropic index as 1.2, and that these discs are always in hydrostatic balance. We also show that even without any inflow, spiral shocks appear in the discs.
متن کاملNumerical Investigation of Vertical and Horizontal Baffle Effects on Liquid Sloshing in a Rectangular Tank Using an Improved Incompressible Smoothed Particle Hydrodynamics Method
Liquid sloshing is a common phenomenon in the transporting of liquid tanks. Liquid waves lead to fluctuating forces on the tank wall. If these fluctuations are not predicted or controlled, they can lead to large forces and momentum. Baffles can control liquid sloshing fluctuations. One numerical method, widely used to model the liquid sloshing phenomena is Smoothed Particle Hydrodynamics (SPH)....
متن کاملThe effect of cooling on the global stability of self-gravitating protoplanetary discs
Using a local model Gammie (2001) has shown that accretion discs with cooling times tcool ≤ 3Ω −1 fragment into gravitationally bound objects, while those with cooling times tcool > 3Ω −1 evolve into a quasi-steady state. We use three-dimensional smoothed particle hydrodynamic simulations of protoplanetary accretion discs to test if the local results hold globally. We find that for disc masses ...
متن کامل